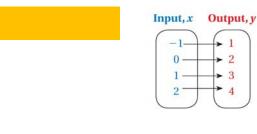
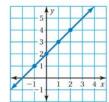


Representation of Functions (Day 2)

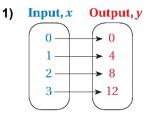

Ways to Represent a Function


An output is 2 more than the input.

$$y = x + 2$$

Input, x	Output, y	
-1	1	
0	2	
1	3	
2	4	

Ways to Represent a Function



> 2

> 3

Writing an equation

Write an equation that describes the function.

)	Input, <i>x</i>	Output, y
	1	0
	3	-2
	5	-4
	7	-6

Writing an equation (function rule)

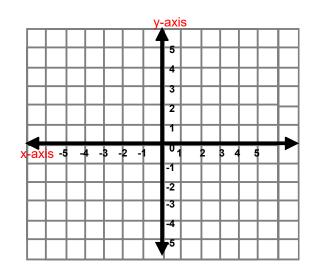
Write a function rule for the statement.

- 3) The output is eleven more than the input.
- 4) The output is the cube of the input.
- 5) The output is one more than twice the input.

Finding the output...

Find the value of *y* for the given value of *x*.

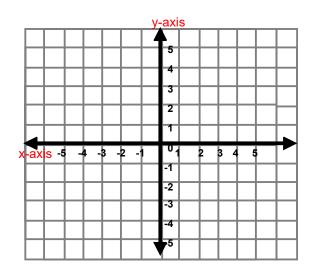
6)
$$y = 7x$$
; $x = -5$


7)
$$y = 3x + 2$$
; $x = 0.5$

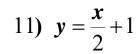
8)
$$y = \frac{x}{2} + 9$$
; $x = -12$

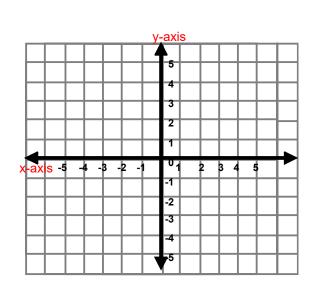
Graphing

Graph the function


9)
$$y = 2x$$

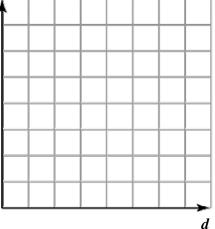
Graphing


Graph the function


10)
$$y = \frac{x}{4}$$

Graphing

Graph the function



Application...

- 12) A dolphin eats 30 pounds of fish per day.
 - a) Write and graph a function that relates the number of pounds *p* of fish that a dolphin eats in *d* days.

p

Application...

12) A dolphin eats 30 pounds of fish per day.

b) How many pounds of fish does a dolphin eat in 30 days?

Finding the input...

Find the value of *x* for the given value of *y*.

13)
$$y = 5x - 7$$
; $y = -22$

Finding the input...

Find the value of *x* for the given value of *y*.

14)
$$y = \frac{x}{4} - 7$$
; $y = 2$